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Abstract—Computer-aided image analysis is becoming increas-
ingly important to efficiently and safely handle large amounts of
high-resolution images generated by advanced medical imaging
devices. The development of medical image analysis (MIA) soft-
ware with the required properties for clinical application, however,
is difficult and labor-intensive. Such development should be sup-
ported by systems providing scalable computational capacity and
storage space, as well as information management facilities. This
paper describes the properties of distributed systems to support
and facilitate the development, evaluation, and clinical application
of MIA methods. First, the main characteristics of existing systems
are presented. Then, the phases in a method’s lifecycle are an-
alyzed (development, parameter optimization, evaluation, clinical
routine), identifying the types of users, tasks, and related computa-
tional issues. A scenario is described where all tasks are performed
with the aid of computational tools integrated into an ideal sup-
porting environment. The requirements for this environment are
described, proposing a grid-oriented paradigm that emphasizes
virtual collaboration among users, pieces of software, and devices
distributed among geographically dispersed healthcare, research,
and development enterprises. Finally, the characteristics of the ex-
isting systems are analyzed according to these requirements. The
proposed requirements offer a useful framework to evaluate, com-
pare, and improve the existing systems that support MIA develop-
ment.

Index Terms—Distributed computing, grid computing, medical
image analysis, problem-solving environment.

I. INTRODUCTION

M EDICAL images are the basis for a large number of clin-
ical tasks in the daily routine of healthcare. Continued

developments in acquisition technology enable capturing the
increasing amounts of high-resolution images that reveal dif-
ferent aspects of the human body’s structure and function with
unprecedented detail. In the clinical routine, such large amounts
of data raise not only storage issues but also challenges for im-
age analysis. In summary, how can/should such large amounts
of data be interpreted efficiently and safely? Adopting compu-
tational aid for medical image analysis (MIA) is no longer an
option, but a necessity.
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MIA is an active area of research that aims at the develop-
ment of (highly autonomous) computational methods for image
enhancement, segmentation, registration, measurement, and in-
teractive visualization. Methods are designed to (automatically)
enhance, detect, select, and display features of interest in the
image, with goals such as shortening or eliminating examina-
tion times, reducing subjectivity, and facilitating measurement.
Methods can originate from new algorithms and from innova-
tive combinations of existing ones. In practice, MIA methods
are often implemented as a composition of processing steps that
progressively analyze the image to generate the required result.
The images can belong to sets of different scans and the results
can be of varied data types, such as images, measured values,
or geometrical descriptions. In this paper, we refer to single
or composed methods that perform any type of MIA operation
simply as MIA methods.

Although many MIA methods are proposed in the literature,
only a limited number prove themselves in producing results
with sufficient reliability to be acceptable for application in clin-
ical tasks. This is due to three main reasons. First, it is difficult
to mimic, by software, the performance of trained human oper-
ators in the task of image interpretation. Algorithm design, as
well as finding the best combination of image analysis steps, are
often challenging tasks. Moreover, even when the MIA method
is well established, it might need adaptation when the imag-
ing protocol changes. In many cases, MIA methods simply do
not meet the required quality standards when confronted with
broader settings and are left unused. Second, the validation of a
new method, before it can be used in practice, demands a huge
effort. This is partly due to the high requirements on reliabil-
ity inherent to clinical tasks, and also to the large biological
variability and the lack of ground truth for the objective perfor-
mance evaluation. The quality of the produced results is usually
estimated in a statistical manner, based on a large number of
images and often involving human intervention. Such evalu-
ation studies consume large computational resources for data
storage and processing, which turns out to be a major burden
in the validation of software for MIA. And finally, integrating
a new method into the clinical environment requires its imple-
mentation in workstations that are integrated into the existing
image analysis workflow. This integration might be impossible
to achieve in turnkey systems without vendor participation, or
it could create an uncomfortable situation for the operator, who
needs to move physically among dispersed devices.

Some of the problems discussed above can be reduced when
an adequate (computational) infrastructure is adopted to effi-
ciently handle the logistics of MIA development and deploy-
ment. Problem-solving environments (PSEs) [1], [2], which are
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typically adopted to support large and complex (scientific) com-
putations, could provide such infrastructure. These systems, or
environments, consist of interactive platforms for designing,
executing, and monitoring complex sequences of operations
and experiments. Offered facilities typically include a graph-
ical editor, assistance for composing sequences of operations
with off-the-shelf software components, transparent access to
distributed high-performance computing (HPC) resources, aids
for data storage and management, recording of experiments,
etc. Although different architectures and technologies can be
adopted in the implementation of these systems, they share the
goal of facilitating the management of “workflow” in scientific
environments, which is why PSEs can also be called workflow
management systems.

The goal of this paper is to identify the properties of com-
putational tools (or PSEs) to support and facilitate the devel-
opment, evaluation, and clinical deployment of MIA methods.
The contribution of this paper is twofold: First, we present a
detailed analysis of the lifecycle of MIA solutions as they are
successfully integrated into clinical environments. The lifecycle
analysis serves as a framework for projects that aim at devel-
oping MIA solutions intended for use in clinical tasks. Using
this framework, researchers can understand and guide their re-
search efforts onto clinically usable MIA methods. Secondly,
we document the requirements for an environment that can sup-
port and facilitate this development process. We also summarize
the characteristics of existing systems according to the require-
ments. The requirements can be used as a framework to evaluate,
compare, and improve the existing software systems to support
MIA development.

The paper is organized as follows. In Section II, we present
a summary of related work on PSEs and other tools to sup-
port complex scientific computation. Next, the phases of MIA
software lifecycle and the associated computational issues are
identified (Section III). The requirements for integrated compu-
tational support at all phases are delineated in Section IV, using
an exemplar (ideal) scenario as illustration. The characteristics
of selected systems are analyzed in Section V, with the discus-
sion of a real MIA application. Finally, Section VI closes the
paper with a discussion and comments about future work.

II. RELATED WORK

A great number of PSEs are available that are relevant to
our work, many of them being inserted in a grid computing
paradigm. In this section, we briefly summarize a selection of
these systems that are directly relevant to aspects of the MIA
method lifecycle and also to the requirements documented in
Section IV. In Section V, many of these systems will be men-
tioned again in the context of how they relate to the requirements
that we set out.

Application visualisation system (AVS) [3] is one of the first
component-based application builders based on a visual pro-
gramming (VP) paradigm in which blocks, representing algo-
rithms, can be interactively connected with lines, representing
connections through which data flow. The current generation

of AVS, called AVS/Express, is used for medical imaging and
visualisation.

Khoros [4] is a component-based system for general image
processing problems. This is also an early example of a VP-
based system.

SciRun [2] is a modern software package that focuses on
providing functionality for computational steering. This PSE
also adopts a VP approach. The design goal of this system
was to provide scientists with a tool for creating new simu-
lations, developing new algorithms, and coupling the existing
algorithms with visualization tools. Successful biomedical ap-
plications have been implemented in SciRun, e.g., BioTensor,
for diffusion tensor imaging, and BioImage, for processing and
visualizing medical image volumes.

The DElft visualization and image processing development
environment (DeVIDE) [5], is a modular framework for the fast
prototyping and deployment of medical visualization and im-
age processing algorithms. Its primary interface adopts the VP
paradigm. DeVIDE distinguishes itself from other similar pack-
ages in that it facilitates what its authors have dubbed “pervasive
interaction,” referring to the fact that a user can interact at all
levels and with all aspects of the system. For example, algorith-
mic source code can be modified at run-time and the effects are
immediately shown.

LONI Pipeline [6] aims at providing a tool for image analysis
and visualization for neuroimaging applications, also adopt-
ing a VP approach. It is able to automatically parallelize data-
independent components. The latest planned release includes
integration with grid resources.

Kepler [7], VLAM-G [8], Triana [9], Taverna [10], and Grid-
Nexus [11] are other workflow management systems that aim at
scientific applications in a grid-enabled environment. However,
none of these focus on biomedical applications.

IXI [12], [13] is an architecture that makes medical image
processing algorithms available as grid services. It is possible
to combine these services into more complex image processing
workflows that execute over distributed computing resources.
Concretely, IXI consists of a set of grid services and a workflow
definition language.

MIAKT [14] represents an interesting approach in allowing
different clinicians to collaborate, via the MIAKT software, on
a diagnosis and treatment plan for patients with breast disease.
The system is integrated with the existing hospital environment
and gives access to patient records and previous examinations,
including image data. It uses grid and web services to make
available relevant medical image processing functionality.

Distributed medical data manager (DM2) [15], [16] addresses
some of the challenges of working with real medical data
(e.g., DICOM) on the grid. By acting as an interface between
the normal grid mechanisms for data handling and existing
clinical DICOM servers, privacy-sensitive patient data can be
anonymized and encrypted before being sent to the grid. Only
trusted grid sites are then able to further process the data. Image
metadata is also handled.

Liu et al. [17] have created a database-oriented workflow
management system. Their system focuses on the processing
of large collections of datasets that are used in cross-sectional
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studies and multicenter trials. It integrates with third-party ap-
plications for visualization.

Storage resource broker (SRB) [18] is a generic framework
for storing and making accessible datasets and their metadata
on the grid.

Chimera [19] is a grid-based data processing framework that
implements a database to store provenance data. Provenance
data refers to metadata that describes all operations that have
been performed to yield a certain result. In essence, the complete
history of a given dataset can be stored and queried. Pegasus [20]
is able to generate workflows based on data dependencies that
can be extracted, e.g., from stored provenance data.

Grid architecture for medical applications (GAMA) [21], is
a framework that allows hospitals to make use of grid-based
infrastructure by supplying a grid access point component that
brokers grid services to hospital workstations. A primary focus
of the GAMA framework is being minimally invasive at the user
side. In other words, to the user, the application runs identically,
independently of whether the processing is being performed on
the grid or not.

III. PHASES OF MIA METHODS LIFECYCLE

During its lifetime, MIA methods evolve through four dif-
ferent phases. The first phase is experimental, in which new
methods are designed, implemented, and tested; this is the de-
velopment phase. The second phase is the parameter optimiza-
tion phase, in which the optimal configuration of parameters is
determined for a given class of situations. In the third phase, the
MIA method is applied to a large number of images in evalu-
ation studies that determine their performance at the technical
and clinical levels. Finally, successful MIA methods reach a
phase in which they are inserted in the clinical routine and their
results are used to support clinical tasks.

Two main factors distinguish this model of MIA software con-
struction from the classic sequential waterfall model [22]. First,
feedback loops to earlier phases of the lifecycle are common,
e.g., for further development or parameter optimization when
the image acquisition protocol changes due to the employment
of a new scanning device. Second, each phase involves different
types of activities that are performed by users assuming differ-
ent roles, in a context where people need to collaborate with the
aid of computational tools over long periods of time.

In Section III-A–D the phases are characterized in terms of
the aspects that influence the required computational support:
type of user, typical tasks, amount of handled data, need for
automated versus interactive processing, required processing
speed, handling of failure, stability of implementation (software,
parameters), and interoperability with other systems. The types
of users we define are modeled after those presented by Parsons
et al. [23]. A summary of the lifecycle phases characteristics is
presented in Section III-E.

A. Development

New methods for specific image analysis tasks are designed,
implemented, and tested in the development phase. Here, we
assume a component-based paradigm in which image analysis

functions are implemented by components that can be combined
into processing networks. This paradigm was introduced by the
AVS system, being widely adopted in MIA and other application
areas. According to this paradigm, the developed method could
be an autonomous component (e.g., a new image segmentation
algorithm) or a network of existing components (e.g., combina-
tion of statistical analysis and image registration for a functional
MRI study).

Two user roles are identified: component developer (CD) and
network developer (ND). Whereas the CD is typically a scien-
tific programmer, the ND could be a clinician with training in
image processing. Note that the same user can assume the roles
of CD and ND, e.g., when a network is used for testing of a new
component.

The CD and ND perform different activities. The CD builds
components, performing typical programming tasks such as de-
sign, implementation, debugging, and testing. The component
must be shipped with an the appropriate interface that enables
its adoption into networks at a later stage. The ND selects the
appropriate components, combines them into networks using
control flow constructions, debugs, and tests the networks.

The development of components and networks share the fol-
lowing characteristics. The method is typically tested for a lim-
ited number of images, and the results are visually inspected.
Interaction is essential to modify the implementation and pa-
rameters, as well as to inspect results in real time. The method
is executed in a stand-alone, informal, and tolerant environment
that intrinsically includes faults. The implementation is stable
only at the end of the development phase, whereas the optimal
parameter settings are to be found at a later stage.

B. Parameter Optimization

Parameter optimization consists of finding the best parameter
settings for a method, given an application domain (e.g., the in-
tensity threshold for vessel segmentation from CT angiography
of the head). One user role is identified in this phase: parameter
optimizer (PO). The PO has a technical background but does
not necessarily know how the method works; it could be the
CD, ND, or a clinical co-worker.

In this phase, the method is executed repetitively by the PO
with varying parameter settings, and the quality of obtained
results is analyzed qualitatively by visual inspection, or quan-
titatively, e.g., with quality metrics. If necessary, initially, the
parameter space is investigated to limit the search range, e.g.,
with parameter sweeping techniques (e.g., [24]). Subsequently,
interactive parameter tuning is performed for a limited range of
parameter values. A controlled environment is adopted to facil-
itate the assessment of result quality, often using artificial test
data (e.g., added noise, contrast, and resolution manipulation),
phantoms, and reference results constructed manually from real
data.

The method is typically applied to a reduced number of im-
ages in a stand-alone setting. Interaction and short response
time are essential for real-time steering in the parameter-tuning
phase. For non-interactive optimization, support for autonomous
and repetitive method execution is required. The execution



50 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2006

context is tolerant to errors, although the implementation is con-
sidered stable. Operational faults are not expected at this phase,
and functional faults should motivate further development by
the CD/ND.

C. Evaluation

In this phase, the method is applied to a large number of im-
ages for (statistical) assessment of its clinical value. At the tech-
nical level, evaluation studies typically measure the method’s
accuracy and reproducibility, robustness of results obtained un-
der varying conditions, and response time. At the clinical level
other parameters such as the amount of human intervention,
costs, hospitalization time, and patient comfort are usually as-
sessed. The parameters that provide information about how a
new method compares with the current practice differ according
to the clinical task. In all cases, during evaluation, the method
is inserted into a broader processing scope to test its combi-
nation with existing techniques and infrastructure, simulating a
realistic environment. The activities involved are similar for a
technical and a clinical evaluation, so a single user role is identi-
fied: evaluation user (EU). For technical evaluation, the EU has
technical background in MIA, whereas he/she is a clinician in
clinical trials and epidemiological studies.

The activities consist of applying the method repetitively to
large amounts of artificial or real data and assessing the prop-
erties of the obtained results. Whenever available, quantitative
assessment of quality is preferred by comparing results with
a reference generated manually or with a procedure adopted
routinely. Double blind statistical analysis is often employed in
clinical studies. In such studies, a significant amount of manage-
ment effort is spent for the evaluation, collection, and analysis
of results, in particular when multiple centres are involved. And,
to obtain official certification for a new method (e.g., FDA ap-
proval), all steps of the evaluation process must be carefully
documented and retrieved over large periods of time.

Due to the large amount of processed data, interactive analy-
sis is typically limited to verifying selected results (e.g., cases of
malfunction). When the final goal of the MIA method is visual-
ization (e.g., white matter fiber tracking from DTI MR scans for
pre-operative planning of neurosurgery), interaction and real-
time processing are essential in this phase. To facilitate access
to real data (patients, volunteers) in clinical trials or epidemio-
logical studies, the MIA method should be linked to the image
database (PACS1) in a secure manner, preserving the hospital’s
policy for patient data privacy. In this phase, the implementation
and parameter configuration are stable and the execution con-
text is less tolerant to faults. Functional faults should motivate
further parameter optimization or development by the PO, CD,
or ND.

D. Clinical Routine

After being approved by thorough evaluation, the method is
eligible to process patient data and generate results to support
daily clinical practice. The MIA method is inserted as a step

1Picture Archiving and Communication System.

in the clinical routine, such that it seamlessly participates in
the generation of results used to support the clinical user (CU)
in tasks such as diagnosis, prognosis, treatment planning, and
follow-up. Remote access to distributed resources such as scan-
ning devices and (image) databases are commonplace when
telehealth services are available.

In this phase, the patient data are processed by the appropri-
ate MIA method as a part of the routine workflow. The method
and associated parameters correspond to the “best practices”
determined during the extensive evaluation studies performed
earlier in the lifecycle. The method is now fully integrated into
the IT infrastructure of the radiology department (PACS), to the
hospital information system (HIS), and possibly to remote in-
formation systems. Requirements on data privacy are very high
in this phase, in particular when resources are distributed among
different health centres. For efficiency in healthcare, the MIA
methods applied in the clinic are typically automated or require
minimal user intervention. When the final goal is visualization,
interaction and real-time response are essential in the routine
application of a MIA method. Otherwise, the type of clinical
task determines the demands on response time, being very crit-
ical for first aid support. Finally, robustness of the method is a
strong requirement in this phase, since the system must oper-
ate safely with guaranteed QoS2 (for all patients, 7 days/week,
24h/day). Changes in the environment (e.g., different scanner,
imaging protocol, system architecture, operating system) trig-
ger tests to verify whether the method remains valid. Further
parameter optimization (PO) or development (CD/ND) may be
necessary in the case of malfunction.

E. Characteristics of MIA Lifecycle Phases

The characteristics presented earlier directly influence the
kind of support required by the users assuming different roles
along the method’s lifecycle (see summary in Table I).

1) Typical User: Along the lifecycle, the user background
shifts from purely technical to purely clinical. At one end of the
spectrum of users, the CD and ND have a technical background
(image analysis, programming) and, at the other end, he/she is a
clinician. In the center, the PO and EU have mixed competences
(e.g., a radiologist with training in digital image analysis, a
programmer with training in anatomy). Such a large spectrum
of users represents a challenge to the design of systems and user
interfaces. Moreover, it implies the need of collaboration among
people with different background and interests. In particular
when faults occur while the method is executed in a clinical
setting, the CU (or EU) typically does not have the necessary
technical background to solve the problem. In these cases, the
intervention of other participants (CD, ND) should be requested.
Support for such collaboration and communication is required
for efficient and secure system operation.

2) Tasks: The focus of the task shifts from method to result
along the lifecycle. In the development phase, the focus is on the
internal aspects of the method’s implementation, be it a compo-
nent (programming tasks) or a network (composing tasks). In

2Quality of Service.
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TABLE I
CHARACTERISTICS OF PHASES IN THE LIFECYCLE OF MIA METHODS

the parameter optimization phase, the focus is on the method’s
parameters and the generated results. Tasks here involve running
the method with chosen parameters and evaluating the results.
In the evaluation phase, the focus lies on the results, which are
used to assess the method’s properties. The parameter settings
are seen as a part of the method, which is executed as a black
box. Tasks include running the method, evaluating the quality
of results, collecting outputs (results, quality), and running sta-
tistical analysis on the outputs. Finally, in the clinical routine,
the focus is purely on the generated results. Tasks include run-
ning the method with well-defined parameters. The design and
implementation of an integrated system to support such a broad
range of tasks represents a software engineering challenge.

3) Amount of Data: The amount of data processed in the
experiments increases along the lifecycle. A small number of
data instances are handled during development and parameter
tuning, simply because interactive analysis is seldom admis-
sible otherwise. More data are admissible when automated
parameter-sweeping tools are adopted, requiring the assessment
of quality in a quantitative manner. Evaluation studies involve
larger amounts of data, typically up to 100 instances for
technical evaluation and several hundreds for clinical trials and
epidemiological studies. In the clinical routine, the number of
images is unlimited. Note that “data” in this context refer not
only to images (volumes, two-dimensional (2-D) slices) but also
to other types of results generated by the method (e.g., vector
data) and the associated metadata (e.g., the score produced
during interpretation by a radiologist). For small to medium
amounts of instances, data management can still be done manu-
ally using local processing and file systems. For larger datasets,
structured support for data and information management is nec-
essary. In particular for multicenter or long-term studies, large
and distributed storage and processing resources may be needed.
Besides the typical challenges associated with the design and
implementation of distributed databases, medical applications
introduce an additional challenge with respect to the need of
security due to strict regulations about patient data privacy.

4) Processing Type: The type of processing shifts from
highly interactive to highly automated along the lifecycle. In-
teraction is needed for user input (image or other input data)
and parameter adjustment, being essential during development
and parameter tuning. For practical reasons, interaction is not
desirable when large amounts of data are processed repetitively.

Moreover, interaction is usually avoided in the clinical practice
because it introduces subjectivity in the analysis process. When
the goal of the MIA method is visualization, however, inter-
active analysis is an essential part of the image interpretation
process. In all cases, pre- or post-processing MIA tasks should
be executed as autonomously as possible, such that the user is
prompted only when intervention is needed. The challenge here
is to design a platform in which the alternation and synchroniza-
tion between interactive and autonomous execution can be done
in a seamless fashion, without modifications in the method’s
implementation.

5) Processing Speed: High processing speed is required for
real-time interactive execution in the development and parame-
ter optimization phases, as well as in all phases when the MIA
method fulfils an interactive visualization goal. In the daily rou-
tine, the CU expects results to be produced rapidly but not neces-
sarily in real time. Higher demands could be put on the response
time for critical tasks, e.g., when the generated result supports
first aid or it is used in real time for image-guided surgery.
Although speed is less relevant when automated processing is
adopted, high throughput is required when large numbers of data
instances need to be processed, e.g., in large population studies.
High-performance computing (HPC) resources can be used to
guarantee the desired response time in all cases. The challenge
here is to adopt HPC resources transparently, such that the user
does not have to be aware of the involved logistics.

6) Faults: The acceptability of faults in a MIA method de-
creases along its lifecycle. Method malfunction can occur when
the input data do not match the conditions imposed by the imple-
mentation, generating an exception or a wrong result. Whereas
during development faults are admitted and even expected as
part of the debugging process, they become less acceptable
at later phases of the lifecycle. In particular when many data
instances are involved, faults are inconvenient because they dis-
rupt the regular flow of processing (e.g., the instances have to
be removed from the study). And, in the clinical practice, faults
are not admitted at all, since there is a large responsibility as-
sociated with the image interpretation task that depends on the
generated result. Adequate fault handling is necessary to pre-
vent situations in which errors may go unnoticed or unsolved
and a wrong result is delivered to the user. This can occur when
the amount of generated data is too large, or when the image
analysis network is too complex and the user does not have the
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technical capacity for fully understanding it. At any rate, fault
conditions should never cause a program to terminate execution
abruptly or to generate a wrong result. Instead, an informative
notification should be presented to the CU, which depends upon
that information, and to the CD/ND, which should investigate
how the problem could be avoided in the future. The challenge
here goes beyond the development of fault-tolerant software
in a general sense. It requires a MIA method that can detect
conditions of functional fault and react accordingly, which is a
nontrivial issue in image analysis.

7) Stability of Implementation and Configuration: The sta-
bility of a method’s implementation and configuration increases
along its lifecycle. The implementation evolves mainly dur-
ing development, but the parameter settings change also in the
parameter optimization phase, when the method is adapted to
a given application. During the evaluation studies, when the
method is applied to a larger number of images, the parame-
ter configuration is tested, possibly further improved, and fixed
at the end. When the method is applied in the daily routine,
the parameter values and implementation are fixed, reflecting a
stable status that corresponds to “best practices” found during
extensive evaluation studies. The challenge here is to keep track
of the history of modifications in the method’s implementation
and in the parameter settings for different applications, as well
as the configuration adopted to produce a particular piece of
(meta)data.

8) Interoperability With Other Systems: The need for
interoperability with other (enterprise) systems increases along
the MIA method lifetime. During development and parameter
optimization, the method is executed in a stand-alone fashion,
in an experimental research environment. When real data are
adopted during evaluation studies, it is necessary to connect the
method into the IT infrastructure of the radiology department,
even if only to read the data. Finally, for usage in the daily
routine, the method must be fully integrated into the clinical
enterprise information systems, for reading scanned data and
for archiving the image analysis results. The challenge here is
to design and implement a software architecture that facilitates
the migration among different execution environments, as well
as the integration with heterogeneous multi-vendor enterprise
systems.

IV. COMPUTATIONAL SUPPORT FOR MIA

For efficiency in the development of new MIA methods, com-
putational tools are adopted to support the activities in the var-
ious lifecycle phases. The tasks to be performed are different
for each phase, posing different requirements on the supporting
tools. In practice, different tools, when available, are adopted for
each phase, and the working environment adopted in one phase
has to be manually adjusted to the next phase. For example,
the interactive program used by the CD/ND has to be modified
for execution from an automated environment (e.g., a script-
ing language) by the PO. In the simplest case, a command-line
interface and compatible error handling must be provided. In
another example, it might be necessary to resume the develop-
ment phase when a problem has been detected during a clinical

Fig. 1. Network for interactive execution. Rectangles are components, trapez-
iums are automatically generated GUIs, and rounded shapes represent in-
put/output. The arrows correspond to connections between the components’
ports.

trial, but the input image and the parameter settings that caused
the malfunction have to be recreated manually by the CD/ND.
Such practices are not only tiresome but also prone to tran-
scription/porting errors. An integrated supporting environment
would be therefore valuable to facilitate navigation along the
method’s timeline. Moreover, such an environment could also
capture knowledge and methodology, enabling reuse in similar
situations in the same or in another phase, for the same or for
another method. Section IV-A presents a scenario in which an
ideal MIA supporting system (MIASS) is adopted during the
lifecycle of a MIA method, and the requirements of the ideal
system are defined in Section IV-B.

A. Example: Ideal MIASS

The scenario presented later describes the lifecycle of a hypo-
thetical MIA method assuming the support of an ideal MIASS.
The method is a filter (Filter A) that enhances an input image,
producing another image as output.

In the development phase, the CD implements the functional-
ity of FilterA in a given programming language, using a chosen
integrated development environment (IDE). The filter is encap-
sulated into a component to enable its inclusion into processing
networks. The MIASS component interface defines input and
output ports, as well as input parameters and execution mon-
itors. When networks are executed, ports are used to create
data channels linking components, and GUIs are generated au-
tomatically to enable interactive input of parameter values and
visualization of progress indicators in real time. The code for im-
plementing the component interface is generated automatically
by an interactive wizard from a high-level description provided
by the CD.

For debugging, the new component is plugged into a simple
processing network (see Fig. 1), and the user assumes the role
of a ND. Access is provided to a large repository of general and
specific components, e.g., to import, compare, and display im-
ages. A digital assistant facilitates the network construction by
suggesting appropriate components and network configurations
based on data type associations, templates, and other networks
adopted in similar situations.

During network execution, the ND can change parameters in-
teractively and observe progress via monitoring elements (e.g.,
status bar) and control functions (e.g., stop, pause, run). Only the
information explicitly exposed by the encapsulation interface is
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Fig. 2. Network for parameter sweeping executed repetitively by an external
control loop.

visible to the ND; to debug the internal implementation of Fil-
terA, the user must resume the role of CD. The MIASS exports
the input data (obtained from input ports) and the parameter
values (obtained interactively) and activates the IDE, recreating
the execution context in the external environment.

The module implementation is kept up-to-date at all times.
Source version control, revision management, and additional
logging facilities enable tracking of the implementation history.

The parameter optimization phase starts after the method’s
implementation is considered satisfactory. Initially, the parame-
ter space of Filter A is investigated by the PO using parameter-
sweeping facilities provided by the MIASS. With these facilities,
the method is applied repetitively to the same images for given
ranges of parameter values, adopting the network illustrated in
Fig. 2. The generated image is compared to a given reference,
possibly generated manually, to obtain a quantification of qual-
ity that guides the search in the parameter space. Details of the
parameter settings are now hidden from the user (no GUI) and
replaced by a mechanism that automatically provides input to
the method based on the search strategy. The computation is
automatically distributed among HPC resources to accelerate
the search process.

After the plausible ranges of parameter values have been
determined, the network in Fig. 1. is reused by the PO for in-
teractive tuning. The method is applied to test images, and the
results are inspected visually in real time as the parameters are
changed interactively. The history of parameter-tuning (input
data, parameters, resulting images and quality) is logged auto-
matically and can be retrieved for analysis and documentation
purposes. The optimal parameter settings are saved for future
use.

When an error is detected, the CD or the ND is notified and
the situation that caused it is reproduced by the MIASS in the
development environment. All improvements on the method’s
implementation are automatically available to all the dependent
networks.

The evaluation phase starts once the optimal parameter set-
tings have been determined. Using the MIASS image-sweeping
facilities, the method is applied repetitively to a large number
of images. The adopted network (see Fig. 3) is the same that
is used for parameter sweeping (Fig. 2), however with a dif-
ferent external control mechanism. Here the parameter values
are fixed, the network is run for a collection of images and
corresponding reference results, and the results and measured
quality are gathered for posterior analysis with statistical tools.

Fig. 3. Network for image sweeping executed repetitively by an external
control loop.

Fig. 4. Filter A inserted into the clinical environment.

The provenance/history of results is also saved for future analy-
sis, including input data and details about the executed method
such as version, parameters, etc. To support the large amount of
data and processing required for such studies, the ideal MIASS
furthermore provides transparent access to HPC resources. The
computation is distributed among processing nodes, for e.g., by
running the method in parallel for different images. Remote and
large-capacity data servers are used to store the images, results,
and provenance. Data are transported transparently between the
data and processing servers by the MIASS without intervention
of the PO.

New failure situations can occur during the evaluation, and
the PO/ND/CD should be notified with the proper contextual
information. When a failure corresponds to a permanent func-
tional limitation of the method, the CD or ND introduces fault-
handling mechanisms to detect the situation and activate the
proper action (e.g., user notification). At the end of the evalu-
ation phase, the EU consults the records of history to establish
the “best practices” for applying the method in clinical environ-
ments. These records also facilitate the generation of documen-
tation to obtain approval for adopting the method in the clinical
routine.

Finally, the validated method is introduced in the clinical
routine, being linked to the IT infrastructure of the radiology
department (PACS). Only the core network, without interactive
or quality measurement elements, is used in this phase (Fig. 4).
The method is deployed in a computation node and registered
into a service-oriented system. This service enables the associ-
ation of methods/networks and parameter settings to metadata
such as imaging modality, acquisition protocol, or annotations
introduced by the operator of the scanning device.

After a scan is stored in the PACS, the service-oriented mech-
anism determines the necessity to include FilterA in the radiolo-
gist’s diagnostic workflow. The image is then transported to the
computational node where the method was installed, and the
method is executed with the corresponding parameter values.
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Fig. 5. Network implementing a method where either Filter A or Filter B is
executed depending on a condition (diamond). Note: the parameters are omitted
for simplicity.

After completion, the resulting image is stored into the PACS,
and optionally the CU is notified that the result is available for
interpretation via a messenger system (e.g., web-based message
board or beeper). Exceptions are clearly identified, and the CU
has the choice of activating the interactive processing network
(Fig. 1) for further investigation. When technical background is
needed, or when a problem is detected, the ND or CD are called
in for action.

The clinical consolidation has now been completed, and the
lifecycle can be restarted. The historical records stored in the
MIASS archives are valuable to facilitate software and method-
ology reuse. For example, the parameter optimization and eval-
uation phases must be repeated when the image acquisition
protocol has been modified. The strategy adopted earlier can
be easily reused by retrieving the processing networks. Another
example is the introduction of an alternative to FilterA, say Fil-
terB, which provides improved image enhancement results. The
networks adopted for FilterA in all phases can be adapted by
replacing one component, and the evaluation data (images, ref-
erences) can be reused. The results obtained with both methods
can be compared easily to determine the best performing one
according to the adopted quality metrics. Improvements in the
MIA method (e.g., new implementation or parameter settings)
can become directly available in the clinical environment by
modifying the MIASS service registry.

After some time, there will be several versions of Filter A and
Filter B, as well as different parameter settings for their applica-
tion in particular cases. The MIASS archives are again useful to
keep track of the results generated with different implementa-
tions and parameter settings. Possibly, Filter A performs better
than Filter B for one type of images, but the inverse occurs for
another one. Finding out the best option in each case can be fa-
cilitated by retrieving provenance records stored in the MIASS
archives. In an improved implementation of a MIA method for
image enhancement, the appropriate filter would be chosen dy-
namically depending on the image type, as illustrated in Fig. 5.

B. Requirements for a MIASS

An integrated MIASS to support all phases of MIA methods
lifecycle in the manner suggested by the example in Section IV-
A should fulfil the following requirements:

1) Facilitate the construction of components by offering the
following functionality:

a) assistance for constructing the component interface
with the MIASS (e.g., templates, wizards, code
wrappers);

b) automatic generation of code to obtain input param-
eters, to display status, progress information, and er-
rors, and to output results; the generated code should
be compatible with the execution environment, e.g.,
a graphical user interface (GUI) for interactive exe-
cution and command-line arguments when the com-
ponent is run from a script;

c) activation of a chosen external development envi-
ronment to debug the component’s internal imple-
mentation.

2) Facilitate the construction of networks of components by
offering the following functionality:

a) intuitive GUI to interactively combine components
into networks;

b) constructions for execution control, such as loops,
conditional execution, and functional aggregation of
components;

c) a broad repertoire of components to input, manipu-
late, and display different types of data; and

d) assistance for selecting and combining components
into networks based on data types and records of
previous system usage.

3) Support the execution of MIA methods in varied envi-
ronments in a seamless fashion by offering the following
functionality:

a) interactive execution of methods, providing GUI to
input parameters and visualize results, as well as
debugging tools to run, stop, pause, and inspect the
status of networks and components;

b) activation of methods by external entities in an au-
tomated setting the input parameters for the method
are obtained from an external control unit (e.g., a
scripting language), and the output is stored in a
designated location; if the method is integrated into
the enterprise IT infrastructure, data should be trans-
ported from/to the remote information systems in a
transparent manner;

c) facilities to synchronize automated and interactive
execution in situations when user intervention is
needed during semi-autonomous processing; the
user should be notified about the required inter-
vention (e.g., to provide input data) and provided
with the execution trace to reproduce the context
accordingly.

4) Support storage and retrieval of provenance of the results
generated with the system. Data recorded automatically
should include the executed method (e.g., implementation,
version), input data (e.g., images), parameter values, and
associated metadata (e.g., radiological interpretation).

5) Use HPC resources transparently for computation and data
archival as follows:

a) distribute the processing workload to remote nodes
to guarantee the desired response time during inter-
active processing or heavy computations;
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b) transparently adopt (remote and distributed) data re-
sources to store large amounts of data in a secure
manner for long periods of time; and

c) transport data and transfer the execution control to
the processing nodes and back without user inter-
vention nor awareness.

6) Support user collaboration by offering tools to do the
following:

a) facilitate the communication between users partici-
pating in different phases of the method’s lifecycle;
the MIASS should keep track of the participants
assuming different user roles in the lifecycle and
automatically contact the appropriate user for inter-
vention; all information needed to recreate the cir-
cumstances for intervention (input data, parameters)
should be provided to the user;

b) provide collaborative, dispersed, and secure access
to data, methods, and tools by users at different lo-
cations; it could be CUs of different departments in
the same hospital, the CD and ND of academic and
industrial partners, or CUs of multiple health centres
participating in a clinical trial; patient data privacy
should be guaranteed in all cases.

Note that the list mentioned earlier intentionally omits the
requirements related to software engineering in a broader sense
such as version and revision control. Instead, the presented re-
quirements focus on aspects that are relevant for the construc-
tion of MIA software to be integrated and maintained in clinical
environments.

V. EXAMPLES OF EXISTING SYSTEMS

The requirements proposed in Section IV-B are addressed
by capabilities present in the existing systems. Section V-A
discusses how the systems presented in Section II fulfil the
requirements, and Section V-B presents an example of a real
application.

A. Systems Revisited

The component-based paradigm is acknowledged as an effec-
tive problem-solving approach in several fields, being adopted
by most systems (AVS, Khoros, DeVIDE, LONI, Kepler, Triana,
GridNexus, VLAM-G, etc.). Most of them provide graphical ed-
itors to build networks (Req. 2.a), which can be stored, edited,
and executed interactively (Req. 3.a). Some also provide mech-
anisms for control flow (Req. 2.b), such as the aggregation of
components into reusable units (Triana, GridNexus) and condi-
tional execution (Kepler). The repertoire of components (Req.
2.c) typically focuses on some application domain. LONI in-
cludes popular analysis packages such as FSL [25]; DeVIDE
aims at MIA and visualization methods in general, encapsulating
VTK [26] and ITK [27]; and Kepler and Triana are distributed
with components for several scientific applications in areas such
as astronomy and bioinformatics. Assistance for component se-
lection (Req. 2.d) is offered in the form of data typing and
polymorphism (Kepler, GridNexus) and file extensions associa-

tions (DeVIDE, LONI). IXI and Pegasus can generate networks
automatically from provenance data (Req. 2.e).

Facilities for building components (Req. 1) are typically lim-
ited in current systems. Assistance to program the component
interface (Req. 1.a) is found in the form of templates (DeV-
IDE, Kepler) and code wrappers (LONI, Triana [28]). Auto-
matic GUI generation for input parameters (Req. 1.b) is offered
by many systems (Kepler, VLAM-G), and DeVIDE addition-
ally provides display of progress information. The activation of
external development environments (Req. 1.c) is not supported
by the studied systems.

Most systems provide a single execution mode, either inter-
active (Req. 3.a) or initiated by an external control mechanism
(Req. 3.b) usually provided via a custom scripting language
based in XML.3 In some cases, networks can be executed either
interactively or in batch (Kepler, GridNexus, Triana). Debug-
ging tools for interactive execution are limited to running and
stopping the network (Kepler), whereas DeVIDE additionally
enables component introspection. Integration into external IT
infrastructures (Req. 3.b) has been obtained by running net-
works as web services (Triana, Taverna, MIAKT), grid services
(IXI, DM2), and web-based form applications activated from
databases [17]. Synchronization between interactive and auto-
mated execution (Req. 3.c) is seldom found in the studied sys-
tems. A simple mechanism is implemented in Triana, where the
user can start a network interactively, disconnect, and reconnect
to check the status.

Recording and retrieving data provenance (Req. 4) are in-
creasingly popular facilities offered for knowledge management
in scientific experiments (Chimera, Taverna, IXI, MIAKT).
Such data provenance records have been used, for example,
for drug discovery [29] and automatic generation of reports in
breast cancer screening with mammography [14].

Automatic and transparent distribution of processing (Req.
5.a) is available for computer clusters (VLAM-G, LONI,
GAMA) as well as heterogeneous computation nodes (IXI,
MIAKT, Triana, Nimrod). Access to remote and distributed
data resources (Req. 5.b) is available in several systems (SRB,
MIAKT, DM2). Transparent data transport to/from the process-
ing nodes (Req. 5.c) is found in GAMA, IXI, MIAKT, and
Pegasus.

Support to collaborative work (Req. 6) typically consists of
providing access to physically dispersed data and computing re-
sources (Req. 6.b), being available in most systems. Patient data
privacy is usually obtained in isolated environments (e.g., inside
the hospital’s firewall), whereas global grids are used mostly in
experimental settings (GAMA). Mechanisms for collaboration
along the MIA method lifecycle (Req. 6.a) were not found in
the studied systems.

B. A MIA Application: MMBE

The matched masked bone elimination (MMBE) method is
a preprocessing technique developed at the Academic Medical
Center (AMC, Amsterdam, The Netherlands) to enhance the

3eXtensible Markup Language, http://www.w3.org/XML
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visualization of vasculature in CT angiography (CTA) scans of
the head and neck [30], [31]. This method fully automatically
eliminates bone voxels from CTA images by using an addi-
tional nonenhanced CT scan. First, the two scans (nonenhanced
and contrast-enhanced) are aligned using image registration to
compensate for movements of the patient in between image
acquisitions. A mask is derived from the nonenhanced scan
by thresholding and aligned with the contrast-enhanced scan
according to the computed registration parameters. By appli-
cation of the mask, the bone tissue is removed, resulting in a
bone-free enhanced scan that is directly suitable for volumet-
ric visualization. The method is currently applied to all CTA
examinations of the brain and neck region performed at the
AMC [32].

The MMBE method has evolved according to the lifecycle
described in Section III. The original method [30] adopts rigid
registration, being applicable only to brain scans. An extended
version of this method [31] adopts piecewise registration to
cope with bones that move with respect to each other. Current
efforts aim at improving the segmentation of bone located near
to contrast-enhanced vessels with a multi-scale approach [33].
The component-based approach was adopted to implement the
method using open-source libraries (VTK, ITK). Phantom stud-
ies were performed for parameter optimization. An evaluation
study based on patient data was conducted to determine the
method’s performance for clinical data.

A distributed workflow management system (DWMS [34])
has been adopted to insert the method into the clinical routine
in a seamless fashion. After image acquisition, the scans are
automatically sent to a DICOM node that triggers the proper
MIA workflow based on rules described in terms of metadata
contained in the DICOM header. The workflow consists of a net-
work of components that performs image analysis (e.g., MMBE)
and the necessary data logistics (transfer images to/from the
processing, archival, and visualization units). The network also
includes components that send a notification to the radiolo-
gist upon completion, indicating where the data are available
for inspection. When a failure occurs, the support team is also
notified. The DWMS was implemented using a web-service-
oriented architecture, adopting SOAP4 messages for communi-
cation among components. The processing load is automatically
balanced by distribution on a grid of pre-registered computers
using priorities and monitoring functions. Failed workflows are
automatically recovered. The system also stores provenance data
(status of performed workflows, parameters, and results).

Although no integrated MIASS environment was available
during the evolution of the MMBE technique, its deployment in
the clinical routine has been accomplished with a system that
partially fulfils requirements 3–6.

VI. DISCUSSION AND CONCLUSIONS

In this paper, the development, evaluation, and usage of MIA
software is presented as a process composed of phases in which
varied activities are performed by users assuming different roles

4Simple Object Access Protocol, http://www.w3.org/TR/soap

(Section III). The suggested phases serve as a framework for the
development of MIA solutions that are intended for use in clini-
cal tasks. In the ideal and simple scenario sketched in Section IV-
A, the activities at all phases are supported and facilitated by an
integrated computational environment that fulfils the require-
ments defined in Section IV-B. Although the presented scenario
is very simple, it illustrates well the potential of adopting an in-
tegrated environment for MIA method development, evaluation,
and clinical application. More complex scenarios could also be
envisioned to illustrate the potential of other functionalities de-
fined by the requirements. For example, facilities for virtual
collaboration and remote access to resources could be exploited
when users, image servers, data storage servers, or computation
nodes are physically dispersed. In another example, a broader
repertoire of components could be available to support methods
that process different data types, such as geometric descriptions
or values corresponding to features measured from the image.
And finally, facilities for HPC and synchronization of interactive
and automated execution could be adopted for real-time image-
guided surgery. In summary, the proposed requirements involve
a broad range of functionalities that are potentially useful in
a large number of situations found in medical image analy-
sis. Moreover, the requirements can be used as a framework to
evaluate, compare, and improve existing software systems to
support MIA development. As shown in Section V, many of
the requirements are fulfilled, even if partially, in a large num-
ber of existing systems. However, none of the studied systems
completely fulfils all the requirements to support the lifecycle
of MIA methods as in the suggested scenario.

The current goal of our research is to pursue the development
of a system approximating the ideal MIASS as much as possible.
This is performed in the context of the Virtual Laboratory for
e-Science (VL-e5), a project that aims at the development and
experimental evaluation of generic functionalities of PSEs to
support a wide class of e-Science application environments.

Initially, the properties of existing systems have been studied
based on the requirements in Section IV-B. The first candidates
were systems developed within the scope of VL-e, namely
DeVIDE, DWMS, GAMA, and VLAM-G, which offer comple-
mentary functionality. DeVIDE fulfils several requirements for
component and network construction and interactive execution
(1.a, 1.b, 2.a, 2.d, and 3.a), offering a comfortable environment
for the development and experimentation with new MIA meth-
ods. DWMS aims at the integration of MIA applications in the
radiological ICT environment, improving the interoperability
between image acquisition devices, HPC resources, clinicians,
and researchers (requirements 3.b, 4, 5.a, 5.b, 5.c, and 6.b).
GAMA focuses on the transparent employment of HPC for
processing in dedicated applications, fulfilling requirements
5.a and 5.c. Finally, VLAM-G offers transparent access to HPC
resources to execute networks in an interactive environment
(requirements 2.a, 3.a, and 5.a). It additionally supports
collaborative and remote control of experiments (requirement
6.b) via a database that can be customized to particular
applications.

5http://www.vl-e.nl/
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The next step will be to investigate how these systems can
be combined and/or extended to implement the required func-
tionality, which is a very challenging task. The requirements
proposed in Section IV-B have been useful to bring structure
and a clear target to our current research efforts in the construc-
tion of an integrated environment to support the development of
MIA methods.
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